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This paper is concerned with the motion of small gas bubbles, equivalent diameter
about 1.0 mm, in isotropic turbulent flows. Data on the mean velocity of rise and the
dispersion of the bubbles have been obtained numerically by simulating the turbulence
as a sum of Fourier modes with random phases and amplitudes determined by the
Kraichnan and the von Kármán–Pao energy-spectrum functions, and by calculating
the bubble trajectories from a reasonably well-established equation of motion. The
data cover the range β 6 1, where β is the ratio between the turbulence intensity and
the velocity of rise of the bubbles in still fluid. An approximate analysis based on the
assumption that β is small yields results that compare favourably with the numerical
data, and clarifies the important role played by the lift forces exerted by the fluid.

1. Introduction
Generally, the motion of a gas bubble moving with velocity V (t) through a turbulent

fluid, characterized by a velocity field U (x, t), is governed by the stochastic equation

dV

dt
=F(V (t),U (X (t), t)),

where X (t) denotes the position of the bubble, and F is a (nonlinear) functional of
the fluid and bubble velocities. To obtain statistical properties of the bubble motion
one has to solve this equation, supposing that it is known, and express these statistical
properties in terms of those of the turbulence along the (unknown) path of the bubble.
Information on the characteristics of the turbulence is usually only available from
measurements at fixed positions, so one is faced with the problem of relating Eulerian
characteristics to Lagrangian characteristics. It will be clear that analytical solutions
can only be found in rare cases, which allow special assumptions to be made, and
that numerical simulations offer a better chance to gain some understanding of the
motion of bubbles in turbulent flows. In this paper we present results of approximate
analyses and numerical simulations of the motion of gas bubbles rising at high
Reynolds numbers through homogeneous isotropic turbulence.

The turbulent velocity field is simulated by a large number of Fourier modes
varying randomly in space and time, chosen in such a way that the associated energy-
spectrum function has the desired form. This technique was proposed by Kraichnan
(1970) to simulate turbulent self-diffusion, and modified versions have been widely
used to study the settling and dispersion of small rigid particles in isotropic turbulence
(e.g. Maxey 1987a; Fung 1993; Mei 1994; Wang & Stock 1994). The energy-spectrum
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functions chosen in this paper are that used originally by Kraichnan (1970) and
the von Kármán–Pao spectrum (e.g. Helland, Van Atta & Stegen 1977); in both
cases the frequency dependence is chosen in accordance with the results of numerical
simulations by Hunt, Buell & Wray (1987). Details on the method of simulation are
given in §2.

The bubble motion is taken to be governed by an equation proposed by Thomas
et al. (1984) and used by these authors to study the interaction of gas bubbles
with coherent vortices in a plunging water jet (see also Sene, Hunt & Thomas
1994). The forces exerted on a bubble by the surrounding fluid are described by
a superposition of the force on a rigid sphere in an inviscid unsteady non-uniform
rotational flow (Auton, Hunt & Prud’homme 1988), and the drag experienced by a
spherical gas bubble rising steadily at high Reynolds number in still fluid. A good
approximation for this drag force can be obtained by a calculation based on viscous
potential flow theory (Moore 1963). The equation of motion of the bubbles and its
underlying assumptions, together with the numerical methods used to calculate the
bubble trajectories and the associated statistics, are described in §3.

Numerical and approximate analytical results for the motion of the bubbles are
discussed in §§4 and 5. Section 4 is concerned with the effects of the turbulence on the
mean velocity of rise of the bubbles, and §5 considers their velocity fluctuations and
dispersion. In the analyses, which use ideas from Maxey (1987a), it is assumed that
β, the ratio between the turbulence intensity and the velocity of rise of the bubble in
quiescent fluid, is small. The numerical simulations cover the range β 6 1. It is found
that the velocity of rise is markedly reduced, down to 50% of the value in still fluid.
The longitudinal and lateral dispersion processes over large times can be associated
with diffusion coefficients. These coefficients have a value which is less than 40% of
that for fluid particles when the integral length scale of the turbulence is five times the
length scale that characterizes the velocity relaxation of the bubbles; however, when
these length scales are approximately equal, the diffusion coefficients for the bubbles
become considerably larger than those for fluid particles for values of β larger than
0.5. A simple explanation for this is proposed at the end of the paper.

2. Simulation of the turbulent velocity field

The velocity field is represented as a Fourier series

u(x, t) =

N∑
n=1

[
ã(n) cos(k(n) · x+ ω(n)t) + b̃

(n)
sin(k(n) · x+ ω(n)t)

]
, (2.1)

with random coefficients ã(n)
i , b̃(n)

i (i = 1, 2, 3), and random wave vector components

k
(n)
i and frequencies ω(n). The number of modes N is large, typically 200 in our

simulations. By taking

ã(n) = a(n) × k(n)

|k(n)|
, b̃

(n)
= b(n) × k(n)

|k(n)|
,

it is assured that the velocity field is solenoidal.

The coefficients a(n) and b(n) are chosen such that the velocity field is isotropic, with
a given turbulent intensity, and the discretization of wavenumber space is such that,
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for a given energy-spectrum function E(k), there is equal energy∫ k(n)

k(n−1)

E(k)dk

associated with each wave vector k(n). For isotropic turbulence

3
2

N∑
n

|u(n)|2 = 1
3

N∑
n

|a(n)|2 = 1
3

N∑
n

|b(n)|2 = 3
2
u2

0,

where the overline denotes ensemble averaging, and

3
2
u2

0 =

∫ ∞
0

E(k)dk. (2.2)

Accordingly, to obtain the wave vectors k(n), the direction of this vector is chosen
randomly uniform and the length is determined by the prescription∫ k(n)

0

E(k)dk = 3
2

(
n− 1

2

)
u2

0/N.

Next, the random coefficients a(n) and b(n) are determined by again choosing a
uniformly random direction and choosing a length from a Gaussian distribution with
zero mean, and variance 9

2
u2

0/N.
The simulations have been performed with two forms of the energy-spectrum

function: the Kraichnan spectrum function, which is representative for low-Reynolds-
number turbulence behind a grid (Batchelor & Townsend 1948), and the von Kármán–
Pao spectrum function, which was found by Helland et al. (1977) to well represent
data for high-Reynolds-number turbulence. The Kraichnan spectrum function is
given by

E(k) =
16(

1
2
π
)1/2

u2
0k

4

k5
0

exp
(
−2k2/k2

0

)
,

which has a maximum at the wavelength k0. The simulated velocity field is thus spec-
ified by the choice of the velocity scale u0 and the lengthscale 1/k0; this automatically
fixes other turbulence scales like the longitudinal integral scale L11, defined as

L11 =
π

2u2
0

∫ ∞
0

E(k)

k
dk, (2.3)

and the Taylor microscale λ,

1

λ2
=

2

15u2
0

∫ ∞
0

k2E(k) dk, (2.4)

since for the Kraichnan spectrum it can be shown from (2.3) and (2.4) that

L11 =
(2π)1/2

k0

, λ =
2

k0

.

A convenient way of writing the von Kármán–Pao spectrum function is

E(k) = αK
ν2

η

(
L

η

)5/3
(kL)4

[1 + (kL)2]17/6
exp

(
− 3

2
βK(kη)4/3

)
,

which contains, for a given value of the viscosity ν, four parameters: αK , βK , an
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integral length scale L, and the Kolmogorov length scale η. The spectrum is again
made fully determinate by a specification of the turbulent intensity u0 and one of the
length scales L11 or λ. This is achieved by using relation (2.2), one of (2.3) and (2.4), the
fact that for isotropic turbulence the rate of energy dissipation ε can be expressed as

ε = 15ν
u2

0

λ2
=
ν3

η4
, (2.5)

and the empirical relationship (Sreenivasan 1984)

η

L11

' 1.0

(
u0L11

ν

)−3/4

. (2.6)

For our simulations we took as the viscosity of the fluid that of water at a temperature
of 20◦C, and, to allow for comparisons, the velocity scale u0 and either the longitudinal
integral scale L11 or the Taylor microscale λ were taken equal to that used in the
simulations with the Kraichnan energy-spectrum function.

Figure 1 illustrates that by taking the two longitudinal integral scales equal, for a
fixed value of u0, the available energy in the Kraichnan spectrum is partly shifted
towards the higher wavenumbers. Since (1/λ)2 is a measure of the dispersion of
energy in wavenumber space, this means that the Taylor microscale becomes smaller.
By taking equal Taylor microscales the shift towards higher wavenumbers is less sub-
stantial and a considerable amount of energy is also converted to low wavenumbers.
Thus, the integral scales become larger and, since these are a measure of the extent
over which velocities are reasonably correlated, the typical size of eddies is increased.
Combining the relations (2.5) and (2.6) gives

L11

λ2
=

u0

15ν
, (2.7)

which shows that, for a fixed value of the Taylor microscale, the longitudinal integral
scale becomes larger in proportion with an increase in the turbulent intensity u0, while
for a fixed value of the longitudinal integral scale, the Taylor microscale shortens in

proportion to u
1/2
0 .

Finally, the frequencies ω(n) are chosen randomly from a Gaussian distribution
with zero mean, and standard deviation(

[ω(n)]
2
)1/2

= a∗u0k
(n).

This implies that the energy spectrum E(k, ω) has the form

E(k, ω) = E(k) exp

[
− ω2

2(a∗ku0)2

]
/
(
(2π)1/2(a∗ku0)

)
. (2.8)

The choice is motivated by the direct numerical simulations of Hunt et al. (1987),
which show that a good approximation for E(k, ω) is (2.8) with a∗ ' 0.40 for kL11 6 10,
and a∗ ' 0.51 for kL11 > 15. We have performed simulations both with a∗ = 0.51 and
with a∗ = 0.40 for the whole range of wave modes (and for all values of Rλ = u0λ/ν),
but the results for the bubble motion appeared not to differ qualitatively.

2.1. Structure of the turbulent velocity field

To investigate whether the bubbles preferently sample certain regions of the turbulent
velocity field we have used the flow structure classification of Hunt, Wray & Moin
(1988; see also Wray & Hunt 1990). This classification distinguishes regions of the
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Figure 1. Examples of the energy-spectrum functions used in the numerical simulations, for (a)
β = 0.25 and (b) β = 0.66, with β the ratio between the turbulence intensity and the bubble rise
velocity in still fluid. - - -, Kraichnan spectrum; —, von Kármán–Pao spectrum with the same energy
and Taylor microscale as the Kraichnan spectrum; · · ·, von Kármán–Pao spectrum with the same
energy and integral length scale as the Kraichan spectrum. The arrows indicate the wavenumbers
related to the relaxation length τbVT and the radius a of the bubbles used in the simulations. The
Taylor microscale and the integral length scale of the Kraichnan spectrum are 4 and 5 times the
bubble relaxation length, respectively.

flow by a comparison of the second invariant of the rate-of-deformation tensor,
defined as

Π =
∂ui

∂xj

∂uj

∂xi
= e2

ij − 1
2
ω2
k ,

with eij the rate-of-strain tensor and ωk the vorticity, the pressure p and the magnitude
of the velocity |u| with suitable threshold values. These could for instance be chosen
as the root-mean-square values for the flow. Special zones in this classification are:
eddy zones: Π < − 1

2
Πrms and p < − 1

2
prms;

shear zones: Π < − 1
2
Πrms and − 1

2
prms < p < prms;

streaming zones: |Π | < 1
2
Πrms and |u| > u0;

convergence zones Π > Πrms and p > prms.
An expression for the second invariant in terms of the random coefficients a(n),

b(n), the random wavenumber vectors k(n) and frequencies ω(n) follows readily by
differentiating the series (2.1). To obtain an expression for the pressure in terms of
these coefficients one may solve the Poisson equation

∇2p/ρ = −Π,

which yields

p(x, t)

ρ
=

N∑
m6=n=1

N∑
n=1

[
α11 cos

(
k(+) · x+ ω(+)t

)
+ α12 sin

(
k(+) · x+ ω(+)t

)]

+

N∑
m6=n=1

N∑
n=1

[
α21 cos

(
k(−) · x+ ω(−)t

)
+ α22 sin

(
k(−) · x+ ω(−)t

)]
,
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Zone SB (KS) WH (DNS)

eddy 16% 13%
shear 7% 6%
streaming 36% 25%
convergence 7% 4%

Table 1. Comparison of present results (SB) with those of Wray & Hunt (1990) (WH) for the
average volume fraction drawn in to each zone

with

k(+) = k(m) + k(n), k(−) = k(m) − k(n),

ω(+) = ω(m) + ω(n), ω(−) = ω(m) − ω(n),

and

α11 = −1

2

(ã(m) · k(+))(ã(n) · k(+))− (b̃
(m) · k(+))(b̃

(n) · k(+))

|k(+)|2
,

α12 = −1

2

(b̃
(m) · k(+))(ã(n) · k(+)) + (ã(m) · k(+))(b̃

(n) · k(+))

|k(+)|2
,

α21 = −1

2

(ã(m) · k(−))(ã(n) · k(−)) + (b̃
(m) · k(−))(b̃

(n) · k(−))

|k(−)|2
,

α22 =
1

2

(b̃
(m) · k(−))(ã(n) · k(−))− (ã(m) · k(−))(b̃

(n) · k(−))

|k(−)|2
.

As an example the four zones are indicated in figure 2, which is a two-dimensional
snapshot, dimensions 5L11, of a three-dimensional velocity field generated using the
Kraichnan spectrum function. The flow in the eddy zones is clearly seen to swirl,
while it diverges or converges in the convergence zones; the eddy zones appear to be
surrounded by streaming zones. The general picture given by Wray & Hunt (1990),
in a study using DNS with Rλ ≈ 25, is that eddies, sometimes flanked by shear zones,
pump fluid along streams, which may collide to form convergence zones, deflecting
the streams away back toward the eddies.

The average volume fraction that is taken in by the zones was found not to depend
much on the values of u0 and k0. Table 1 gives a comparison of our results with those
of Wray & Hunt (1990); they agree fairly well.

2.2. Discussion

An extensive comparison of the properties of the flow fields generated by our method
of kinematic simulation, with those found by other methods and with well-known
analytical results, is given in Spelt (1996). As is commonly found with this method
of simulation, the two-point Eulerian statistics are represented well, but it fails to
produce for instance a realistic Lagrangian velocity correlation and velocity-derivative
skewness.

One typically finds for all time separations a value of the Lagrangian velocity
correlation which is less than that of the Eulerian velocity correlation. As argued
by Tennekes (1975), the temporal Eulerian autocorrelation that is recorded for small
time separations is determined to a large extent by the process of sweeping of the
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Figure 2. Two-dimensional snapshot of the three-dimensional velocity generated by a kinematic
simulation using the Kraichnan spectrum function with u0 = 8.18 cm s−1 and L11 = 4.74 cm.
Coordinates are made dimensionless with L11. (a) Eddy zones; (b) shear zones; (c) streaming zones;
(d) convergence zones. The flow direction is along the small line elements, away from the dots that
mark the base of these elements.

small scales past the observation point by the large-scale motions of the turbulence.
On the other hand, over small time separations the velocity of a fluid particle remains
reasonably well correlated. Thus it is expected that for small time separations the
Eulerian velocity correlation function should lie below the Lagrangian autocorrelation
function. A procedure to overcome this difficulty, by representing the dynamical
process of sweeping of the small scales by the large scales within the method of
kinematic simulation, has been devised by Fung et al. (1992). However, as it stands
this rather time-consuming improvement leads for longer times to a decorrelation of
the velocities at neighbouring points, and therefore cannot yet be used for our type
of calculations. We believe that this is not really a drawback; in the problem studied
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here the bubbles cut rapidly through fluid particle trajectories, so that the Eulerian
structure is more important than the Lagrangian.

That a non-realistic velocity-derivative skewness, and thus a non-accurate repre-
sentation of the instantaneous small-scale vorticity distribution, may seriously affect
simulation results for small rigid particles has been demonstrated by Wang & Maxey
(1993a). Whereas the kinematic simulations of Maxey (1987a) show an increase in the
fall velocity of the particles over the fall velocity in quiescent fluid of at most 10%,
the direct numerical simulations of Wang & Maxey (1993a) yield increased values up
to 50% under comparable conditions. The difference is due to the fact that in the
direct numerical simulations the turbulent flow evolves with the appropriate spatial
and temporal structures, including the organized features of the dissipation-range
dynamics. That these should be important was to be expected from Maxey’s (1987a)
approximate analyses, which show that the increased drift of the particles is related
to higher-order velocity-derivative statistics.

For bubbles rising at high Reynolds numbers through turbulence with low intensity
and characteristic length scales of the order of the length scale for the velocity
relaxation of a bubble, it will be shown below that the dominant contribution to
the statistics of the bubble motion is associated with the velocity autocorrelation
function of the turbulence. This Eulerian property is represented well, of course, by
our method of simulation, and a satisfactory agreement will be found between the
analyses and the simulations when β, the ratio between the turbulence intensity and
the rise velocity of the bubbles in still fluid, is small. For larger values of β it is
conceivable that the instantaneous small-scale vorticity structure will become more
important for the statistics of the bubble motion, especially in turbulence of high
intensity (β > 1) when the bubble motion is governed by acceleration reaction forces.
Our simulations concern the range β 6 1, and although for these values of β the
simulation results may require improvement quantitatively, we do believe that the
overall behaviour of the statistics is represented well. This behaviour will be found to
make sense, intuitively, and it is encouraging that for values of β close to 1 it shows
the trends predicted by an approximate calculation for turbulence of high intensity
and small characteristic length scales. We would like to emphasize that we welcome
a check on our results by other methods of simulation.

3. Simulation of the motion of the bubbles
The equation governing the motion of small gas bubbles in liquids is still subject

to discussion. When the characteristic Reynolds number of the bubble motion
Re = 2a|V − U |/ν (a denoting the equivalent bubble radius) is high, and surface
tension is large enough to keep the bubbles of spherical shape, it is sensible to use
for practical purposes the equation of motion proposed by Thomas et al. (1984).

Bubbles with equivalent diameters of the order of 1 mm remain approximately
spherical when rising steadily through water. The velocity of rise is about 25
cm s−1, and the Reynolds number is O(102). The drag coefficient in this case
is Cd = 48/Re + O(Re−3/2), and so the use of a linear drag law is a reasonable
approximation, which defines the velocity of rise as VT = a2g/9ν, where g denotes
the gravitational acceleration.

An approximate expression for the forces exerted on a rigid sphere in an unsteady
inviscid rotational flow has been derived by Auton et al . (1988), under the assumptions
that (i) changes in the fluid velocity on the scale of the sphere are small compared
to the relative velocity, i.e. a||∇U || � |V − U |, and (ii) the length scale for changes
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in the fluid velocity gradients is large compared with the sphere radius, i.e. ||∇U || �
a||∇(∇U )||. If the sphere has negligible mass its motion is described by the equation

dV

dt
= 3

DU

Dt
− (V −U )×Ω,

where D/Dt ≡ ∂/∂t + U · ∇ is the fluid acceleration at the position of the bubble,
and Ω = ∇×U is the vorticity.

The proposal of Thomas et al. (1984) is to combine this expression with the drag
law mentioned above. One then obtains

dV

dt
= 3

DU

Dt
− (V −U )×Ω− 2g− 1

τb
(V −U ), (3.1)

where the time constant τb is defined by τb = a2/(18ν) = VT/(2g). For want of
anything better we have adopted this equation for our simulations. It implies that the
length scales of the turbulence should be large compared with the bubble radius. The
ratio 1/a is indicated in figure 1. It is seen that the condition is met in most of the
simulations; length scales of the velocity field that are smaller than the bubble radius
may only occur in simulations that use the von Kármán–Pao spectrum with a fixed
value of L11.

3.1. Dimensionless groups and simulation procedure

The motion of gas bubbles through a turbulent flow may be characterized by the
dimensionless groups (Hunt, Perkins & Fung 1994)

u0

VT
,

L11

τbVT
,

TL

τb
,

which relate the relaxation time τb of the bubble to characteristic time scales of the
turbulence. The integral length scale L11 is a measure of the size of the eddies in the
flow, and thus of the spatial variation of the turbulence, whereas the integral time
scale TL is a measure of the time variation of the turbulence. When the rise velocity of
a bubble is relatively small, a measure of this is the ratio β = u0/VT , the dimensionless
group TL/τb indicates whether the bubble responds quickly to the turbulent velocity
fluctuations; it does so when the group has a large value. In what follows we have
used that for grid turbulence TL/(L11/u0) is approximately constant, and have not
considered TL/τb as an independent group. We restrict ourselves to cases in which
the turbulent intensity is less than the bubble rise velocity, i.e. β 6 1. Especially when
β is small, the rise velocity is large, and the bubble drifts easily through eddies; the
relevant time scale for changes in the fluid velocity is then L11/VT . Thus it is the value
of the dimensionless group L11/(τbVT ) which is used here to indicate whether the
bubble immediately adapts its speed to that of the fluid, rather than TL/τb. It is also
useful to introduce the group λ/(τbVT ) that can vary independently upon comparing
different energy-spectrum functions. We therefore define

β =
u0

VT
, µ∗ =

L11

τbVT
, λ∗ =

λ

τbVT
.

Note that similar groups have been used by Nir & Pismen (1979) in an analysis of
the dispersion of heavy particles.

In the simulations the velocity of the bubbles in quiescent fluid VT is taken as
27.25 cm s−1 and the time constant τb as 13.9 ms; the equivalent radius a is then
approximately equal to 0.5 mm. The consequences of changes in the structure of
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the turbulence are studied by varying β, through variation of u0, and by fixing the
value of µ∗, that of λ∗, or both. In particular, in one set of simulations we took
for the Kraichnan spectrum λ∗ = 4 and µ∗ = 2(2π)1/2 ' 5, which means that the
Taylor microscale is 15.1 mm and the longitudinal integral scale is 18.9 mm. The
simulations with the von Kármán–Pao spectrum then either use the same value λ∗,
i.e the same Taylor microscale, or the same value of µ∗, i.e. the same longitudinal
integral scale. A second set of simulations used λ∗ = 1 and µ∗ = (π/2)1/2 ' 5

4
for the Kraichnan spectrum, and an equivalent procedure for the von Kármán–Pao
spectrum.

The simulations were done with a 80486-processor based PC, equipped with a
NDP VAST-2 Vectoriser and a Microway i860 Number Smasher. In each realization
of the flow a single bubble is released with velocity VT and its trajectory calculated
with a fourth-order version of the Bulirsch–Stoer scheme (Press et al. 1991) over a
sufficiently long time, typically of the order L11/u0, to allow the determination of
the correlation functions. The best results for the statistical properties of the bubble
motion were obtained by first time-averaging over each trajectory, where the origin
was set at t0 > 5τb, and subsequently taking ensemble-averages over at least 200
realizations.

4. Mean velocity of the bubbles
The dimensionless deviation of the mean rise velocity V from its value in quiescent

fluid is shown in figure 3. It appears that in the range of β considered here, the
bubbles are on average slowed down by the turbulence, even to 50% of their velocity
of rise in quiescent fluid. This effect is more prominent for the simulations with the
Kraichnan spectrum than for those with the von Kármán–Pao spectrum with fixed
Taylor microscale, and even more so for the simulations with the von Kármán–Pao
spectrum with fixed longitudinal integral scale. For each of the spectra the mean
bubble velocity diminishes with increasing turbulence intensity, i.e. down to a value
of β roughly in the range 0.3 – 0.5. For higher values of the turbulence intensity the
bubble velocity increases again or becomes approximately independent of β.

4.1. Approximate analysis for large rise velocities

To clarify the observed behaviour for small values of β one can use the theory in of
Maxey (1987a, §4). From (3.1) it follows that the velocity difference vi = Vi − VT i is
related to fluctuations in the fluid velocity ui and vorticity ωi by the equation

dvi
dt

= 3

(
∂ui

∂t
+ uj

∂ui

∂xj

)
− εijk[VT j + (vj − uj)]ωk −

1

τb
(vi − ui),

in which the subscripts can be x, y, z. Let U, L be a typical velocity scale and length
scale of the turbulence, and assume that we may take L/U as a typical time scale of
the turbulence. When U/VT � 1, a typical time scale of the fluid velocity fluctuations
along the trajectories of the bubbles is L/VT , so that we have

(VT/U)
dv′i
dt′

= 3

(
∂u′i
∂t′

+ u′j
∂u′i
∂x′j

)
−εijk[(VT/U)ej+(v′j−u′j)]ω′k−(L/Uτb)(v′i−u′i). (4.1)

Here the unit vector e points upwards, and the primes denote that the variables are
dimensionless.
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Figure 3. The difference between the mean velocity of rise of a bubble V in isotropic turbulence
and its value in still fluid VT , as a function of β. (a) 2,——, Kraichnan spectrum with λ∗ = 1 and
µ∗ = (π/2)1/2; 4,— —, von Kármán–Pao spectrum with fixed Taylor microscale (λ∗ = 1); ©,- - - -,

von Kármán–Pao spectrum with fixed integral scale (µ∗ = (π/2)1/2). (b) As in (a) but with λ∗ = 4

and µ∗ = 2(2π)1/2. Curves show the analytical results for small β.

Now, assume that

U
VT
� L

τbVT
� VT

U ,

which implies that the analysis is restricted to cases in which most of the turbulent
energy is in intermediate length scales, as in the numerical simulations.

Following Maxey (1987a) one first expands the bubble path in terms of U/VT :

X ′(t′) = X ′(0)(t′) + (U/VT )X ′(1)(t′) + (U/VT )2X ′(2)(t′) + · · · .

The lowest-order result, expressed in physical variables, is the straight path X (0)(t) =
V T t. As pointed out by Maxey, the expansion is only valid as long as the deviation
from the straight path |X (t) − X (0)(t)| is much smaller than a typical length scale in
the turbulence. This is clearly the case if U/VT is small enough: during the time
that the bubble traverses a structure of size L (typically L/VT ), |X (t)−X (0)(t)| is of
O(UL/VT ), which is small compared to L.

Next, introduce an expansion for the fluid velocity along the bubble trajectory:

u′i(X
′(t′), t′) = u′i(X

′(0)(t′), t′) + (U/VT )X ′(1)(t′) · ∇′u′i(X ′(0)(t′), t′) + · · · ,

and a similar expansion for the vorticity, and substitute these in the dimensionless
equation of motion of the bubbles. Under the above-mentioned assumptions this gives
a set of equations for the coefficients of an expansion of the dimensionless bubble
velocity,

v′(t′) = v′(1)(t′) + (U/VT )v′(2)(t′) + · · ·
of which the first two are

dv′(1)
i

dt′
= − L

τbVT
(v′(1)
i − u

′(0)
i )− εijkejω′(0)

k , (4.2)
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dv′(2)
i

dt′
= − L

τbVT
(v′(2)
i − X ′(1) · ∇′u′(0)

i )

− εijk(v′(1)
j − u

′(0)
j )ω′(0)

k + 3

(
∂

∂t′
+ u

′(0)
j

∂

∂x′j

)
u
′(0)
i . (4.3)

Here u′(0)
i = u′i(X

′(0)(t′), t′) and ω′(0)
i = ω′i(X

′(0)(t′), t′).
The solution of equation (4.2) reads, in dimensional form,

vi
(1)(t) =

∫ t

0

e−(t−τ)/τb
{

1

τb
ui

(0)(τ)− VTεijkejω(0)
k (τ)

}
dτ, (4.4)

from which

U
VT

Xi
(1)(t) =

∫ t

0

{
1− e−(t−τ)/τb

}{
ui

(0)(τ)− τbVTεijkejω(0)
k (τ)

}
dτ, (4.5)

which will be used below. As before, the unit vector e points upwards. The large-
time-limit average of (4.2) yields

v
(1)
x = u

(0)
x = 0,

which shows that the deviation in the mean rise velocity is of order β2.
Next by substituting (4.4) and (4.5) into equation (4.3) and taking the large-time

limit one finds

U
VT

v
(2)
x =

U
VT

X (1) · ∇u(0)
x − τbεxjk

(
v

(1)
j ω

(0)
k − u

(0)
j ω

(0)
k

)
= τbVT

∫ ∞
0

∂2Rxx

∂x2
j

(τV T ; τ)dτ

+τbVT

∫ ∞
0

e−τ/τb
{
∂Rjj

∂xx
− τbVT

∂2Rjj

∂x2
x

}
(τV T ; τ)dτ,

and

U
VT

u
(1)
x =

U
VT

X (1) · ∇u(0)
x

= τbVT

∫ ∞
0

{
1− e−τ/τb

} ∂2Rxx

∂x2
j

(τV T ; τ)dτ,

where Rij(x; τ) = ui(0; 0)uj(x; τ). With equations (3.4.5) and (3.4.6) of Batchelor (1953)
these expressions can be rewritten to obtain

V − VT = 4β2τbV
2
T

∫ ∞
0

1

r

∂f

∂r
(r, r/VT )dr + O(β3VT ), (4.6)

ux = β2τbV
2
T

∫ ∞
0

(
1− e−r/τbVT

){∂2f

∂r2
+

4

r

∂f

∂r

}
(r, r/VT )dr + O(β3VT ), (4.7)

with u2
0f(r, t) = R11(r, 0, 0; t). If the time for a bubble to traverse L11 (typically L11/VT )

is smaller than the time in which the fluid velocity starts to decorrelate (typically λ/u0),
the decorrelation in time of f(r, τ) may be neglected, i.e.

f(r, τ) ≈ f(r) when L11β/λ 6 1.

Using this approximation, and substituting equation (3.4.16) of Batchelor (1953)
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finally yields

V − VT =
1

VT

∫ ∞
0

E(k)χ(kτbVT )dk + O(β3VTL11/λ), (4.8)

ux =
1

VT

∫ ∞
0

E(k)φ(kτbVT )dk + O(β3VTL11/λ), (4.9)

with the weighting functions

χ(x) = − 1
2
πx,

φ(x) = −1− 1
2
πx+

(
− 1

x3
− 1

x
+ x

(
1

x2
+ 1

)2
)

tan−1x.

Note that in the case of the Kraichnan spectrum function (4.8) can be easily worked
out further:

V − VT = −(8π)1/2 β2VT

(
τbVT

λ

)
+ O(β3VT ),

which explicitly shows the role of λ∗. The approximate expression (4.8) for the bubble
velocity has been plotted in figure 3, and the agreement with the numerical results
is satisfactory. The strongest decrease in the mean rise velocity occurs when using
the von Kármán–Pao spectrum with a fixed value of L11, and the smallest deviation
occurs when the von Kármán–Pao spectrum is used with a fixed value of λ. The same
order is found when comparing the values of E(k) around k = 1/(τbVT ) in figure 1,
which of course is due to the fact that in the simulations the energy density is highest
at wavenumbers just below 1/(τbVT ) and falls off strongly at higher wavenumbers.

The above analysis suggests the following mechanism for the reduction in the
velocity of rise of the bubbles (see also figure 4): equation (4.2) describes how
fluctuations in one component of the lateral vorticity cause bubbles to move under
the action of lift forces in the other lateral direction, towards regions where the
difference between the velocity of the bubble and that of the fluid is largest. In other
words, since on average the bubbles move upwards they tend to move to regions
where the downward fluid velocity has a maximum, and the upward velocity has a
minimum. Equation (4.3) indicates that the lateral motion causes the bubbles to slow
down on average because (i) viscous forces make the bubbles adapt their speed to the
fluid velocity fluctuations, which on average are directed downwards along the bubble
path, and (ii) this lateral motion induces a lift force in the downward direction. One
would expect that as the Taylor microscale becomes smaller the mechanism will be
more effective, since inertia forces such as the lift force become more important.

Results for the average vertical fluid velocity sampled by the bubbles are presented
in figure 5. There is fair agreement with the analytical result (4.9). Note that the
data for the different spectra ‘cross’ for β > 0.2, something which is not found in
figure 3. Apparently the above-described mechanism ceases to be dominant as β
becomes larger than 0.2; another, less effective, mechanism causes a reduction in the
rise velocity. As one would expect and as suggested by figure 5, this mechanism is
related to inertia forces other than the lift force.

4.2. Trapping by vortices

It is tempting to relate the decrease in the mean rise velocity of the bubbles, for
β > 0.2, to the phenomenon of ‘trapping by coherent vortices’ observed by J. C. R.
Hunt and his colleagues in mixing-layers (Thomas et al. 1984; Sene et al. 1994): every
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(b)

(c)

(a)

Figure 4. The mechanism by which weak turbulence causes fast rising bubbles to slow down
on average. (a) As the bubble rises one component of the lateral vorticity induces a lift force in
the opposite lateral direction. (b) This lift force pushes the bubble to where it meets the largest
difference between the bubble rise velocity and the vertical fluid velocity. (c) The bubble slows
down due to (i) the increased viscous drag force, and (ii) the lift force that is induced by the other
component of the lateral vorticity as the bubble moves in the lateral direction.
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Figure 5. Average vertical fluid velocity along the bubble path, normalized by the turbulent
intensity u0, as a function of the ratio β = u0/VT . 2,——, Kraichnan spectrum with λ∗ = 1 and

µ∗ = (π/2)1/2; 4,— —, von Kármán–Pao spectrum with fixed Taylor microscale (λ∗ = 1); ©,- - - -,

von Kármán–Pao spectrum with fixed integral scale (µ∗ = (π/2)1/2). Curves show the analytical
result for small β.

now and then a bubble slows down when it is trapped by a vortex, moves with it for
a while, and then speeds up again as the vortex disintegrates. Similar observations
have been made by Wang & Maxey (1993b) and Maxey, Chang & Wang (1994) for
small bubbles in direct numerical simulations of isotropic turbulence (with β � 1).

To obtain evidence for this vortex trapping we have calculated the probabilities
of finding the bubbles in the different zones mentioned in §2. These are presented
in figure 6 for calculations with the Kraichnan spectrum function. The results are
not conclusive. For small values of β the probabilities of finding a bubble in any of
the zones merely equal the Eulerian values given in table 1. As β becomes larger
(particularly for λ∗ = 4) an increasing preferential concentration of bubbles in eddy
zones indeed occurs, whereas the distribution of the various zones in the simulated



The motion of gas bubbles in homogeneous isotropic turbulence 235

0.5

0.4

0.3

0.2

0.1

0 0.2 0.4 0.6 0.8 1.0

P
ro

ba
bi

li
ty

(a)

b = u0/VT

0.5

0.4

0.3

0.2

0.1

0 0.2 0.4 0.6 0.8 1.0

(b)

b = u0/VT

Figure 6. Probabilities of finding a bubble in zones of a turbulent flow following the classification
of Wray & Hunt (1990). Simulations with the Kraichnan spectrum. (a) λ∗ = 1; (b) λ∗ = 4. 2, Eddy
zones; 4, shear zones; ©, streaming zones; �, convergence zones.

turbulence remains the same. But this increase in the probability of being in eddy
zones does not coincide with a decrease in mean bubble rise velocity as the value of
β approaches 1.

Figure 7 shows two snapshots of the instantaneous fluid velocity field together
with the positions of many non-interacting bubbles, in (a) for β = 0.2 and in (b)
for β = 0.8, both from a calculation with a Kraichnan energy-spectrum function
with λ∗ = 4. The lower ends of the elongated structures formed by the bubbles in
figure 7(a) coincide with downflow regions of the flow. In line with the mechanism
advocated above, bubbles are transported to these downflow regions, where their
velocity is significantly reduced; after escaping from these regions the bubbles follow
approximately the same paths along which they accelerate back to a velocity close
to VT (cf. the discussion on figure 14). The elongated structures have disappeared
in figure 7(b); here, an interesting feature is the higher concentrations of bubbles in
the downwards flowing fluid on the edges of vortices. This suggests that for higher
values of β the slowing down of the bubbles is indeed associated with the eddy zones;
although the mechanism is presumably not that of trapping them in vortex cores, but
rather transporting them towards the downwards flowing edges of the eddies, where
the reduction of the velocity is predominantly caused by inertia forces and not by
viscous forces. The phenomenon is reminiscent to what is found in Maxey (1987b) in
cellular flows, albeit by using a different equation of motion for the bubbles. It will
be clear that this interesting issue needs further investigation.

5. Dispersion of the bubbles
The longitudinal dispersion Dx(t) of the bubbles about the mean displacement is

defined by

D2
x(t) = [X(t)−X(t)]2 = [X(t)− Vt]2.
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(a) (b)

Figure 7. Bubble positions and instantaneous fluid velocity field in a plane through a cubic box
of size 7.5 L11 containing 50,000 bubbles. Simulations done with the Kraichnan spectrum function
with λ∗ = 4 and (a) β = 0.2 and (b) β = 0.8. The flow direction is along the small line elements,
away from the dots that mark the base of these elements.

For large values of t the dispersion process can be associated with a longitudinal
diffusion coefficient defined as (Batchelor & Townsend 1956)

Dx = lim
t→∞

1
2

dD2
x

dt
=

∫ ∞
0

Rx(ξ) dξ.

R(ξ) is the autocorrelation function of the fluctuation in the bubble velocity,

Rx(t− t′) = [Vx(t)− V ][Vx(t′)− V ] = vx(t− t′)vx(0),

where in the last step we have used that the dispersion is a statistically stationary
process; note that v as defined here differs from the v used in the previous section.
By normalizing the autocorrelation function with the root-mean-square value of the
bubble velocity fluctuation, the diffusion coefficient may be written as

Dx = v2
xTx,

in which Tx is the longitudinal integral time scale for the bubble motion. Similar
expressions hold for the lateral dispersion and diffusion coefficient.

5.1. Approximate analysis for large rise velocities

The analysis given in the previous section, for β � 1, also yields some approximate
results for the dispersion of the bubbles. The deviation in the bubble velocity from its
undisturbed value VT , correct to O(βu0), is given by equation (4.4). Substituting this
result into definitions given above and applying equation (3.4.5) of Batchelor (1953)
yields for the longitudinal diffusion coefficient

Dx = βu0L11 + O(β2u0L11), (5.1)

and for the lateral diffusion coefficient

Dy = 1
2
βu0L11 − 2τ2

bVTu
2
0

∫ ∞
0

1

r

∂f

∂r
dr + O(β2u0L11),
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where u2
0f(r) = R11(r, 0, 0) and r = VT t. Upon using equation (3.4.16) of Batchelor

(1953) the latter expression can be rewritten as

Dy = 1
2
βu0L11 + 1

4
πτ2

bVT

∫ ∞
0

kE(k)dk + O(β2u0L11). (5.2)

These expressions coincide (as they should) with those derived by Csanady (1963)
and Nir & Pismen (1979) for heavy solid particles, except for a contribution due to
the lift force that induces a lateral motion, and which is seen to increase the lateral
diffusivity. The lateral motion also leads, as explained in the previous section, to a
reduction in the mean vertical velocity of the bubbles. Its effect on the longitudinal
diffusivity is of higher order than taken into account in expression (5.2).

The intensities of the bubble velocity fluctuations are found to be equal to

v2
x =

∫ ∞
0

E(k)φx(kτbVT )dk + O(βu2
0), (5.3)

v2
y =

∫ ∞
0

E(k)φy(kτbVT )dk + O(βu2
0) (5.4)

with

φx(x) = − 1

x2
+

(
1

x3
+

1

x

)
tan−1(x),

φy(x) =
1

2
+

1

2x2
−
(

1

x
+

1

x3
− x

2

(
1

x2
+ 1

)2
)

tan−1(x),

and the longitudinal and lateral integral time scales of the bubble velocity are given
by

Tx = βu0L11

/∫ ∞
0

E(k)φx(kτbVT )dk , (5.5)

Ty =

(
1
2
βu0L11 + 1

4
πτ2

bVT

∫ ∞
0

kE(k)dk

) /∫ ∞
0

E(k)φy(kτbVT )dk . (5.6)

It is seen from these expressions that v2
x is mainly generated by the scales larger than

the relaxation length τbVT , while v2
y is mainly generated by scales smaller than τbVT .

A straightforward calculation next shows that for the Kraichnan spectrum function
the longitudinal and lateral diffusion coefficients are given by, to first order in β,

Dx ' βu0L11, Dy ' 1
2
βu0L11[1 + 4(τbVT/λ)

2].

The intensities of the bubble velocity fluctuations are, if τbVT/λ is small, approximately
equal to

v2
x = u2

0[1− (τbVT/λ)
2], v2

y = u2
0[1 + 3(τbVT/λ)

2],

from which it follows that the Lagrangian integral time scales are

Tx

(L11/u0)
' β 1

1− (τbVT/λ)2
,

Ty

(L11/u0)
' 1

2
β

1 + 4(τbVT/λ)
2

1 + 3(τbVT/λ)2
.

5.2. Results of the simulations

Numerical results for the diffusion coefficients are shown in figures 8 and 9, where
as usual they have been normalized by u0L11. Because of the ‘crossing-trajectories
effect’ (Csanady 1963) the diffusion coefficients for small values of β are substantially
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Figure 8. (a) Longitudinal and (b) lateral diffusion coefficients of the bubbles as a function of
β. The diffusion coefficients are normalized with u0 and the integral length scale L11. 2,——,
Kraichnan spectrum with λ∗ = 1 and µ∗ = (π/2)1/2; 4,— —, von Kármán–Pao spectrum with
fixed Taylor microscale (λ∗ = 1); ©,- - - -, von Kármán–Pao spectrum with fixed integral scale
(µ∗ = (π/2)1/2). Curves show to the analytical results.
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Figure 9. As figure 8 but with λ∗ = 4 and µ∗ = 2(2π)1/2.

lower than those of fluid particles, which are of the order u0L11. The diffusivities
increase with increasing β, but level off when β becomes larger than about 0.25.
However, for larger values of β, typically from between 0.4 and 0.8, the diffusivities
are seen to increase without limit. Figures 10 and 11 give the intensities of the
longitudinal and lateral bubble velocity fluctuations, normalized by the turbulence
intensity u2

0; figures 12 and 13 present the longitudinal and lateral integral time scales
non-dimensionalized by L11/VT . We now briefly discuss some of the salient features of
these figures; it should be said that more research is still needed to find a satisfactory
explanation of all the details.

The first thing to notice is that the general appearance of the figures for the two
different values of λ∗ is the same, except that for the smaller value of the Taylor
microscale changes in the trends occur at lower values of the non-dimensionalized
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Figure 10. Ratios between the intensities of the (a) longitudinal and (b) lateral velocity fluctuations
of the bubbles and the fluid, as a function of β. The data are presented as in figure 8 (λ∗ = 1,
µ∗ = (π/2)1/2); filled symbols show the analytical result for small β.
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Figure 11. As figure 10 but for λ∗ = 4, µ∗ = 2(2π)1/2).

turbulence intensity β. This suggests that the gross features of the bubble statistics
are related to the relative importance of the various inertia forces.

The results of the approximate analysis given above have been indicated in the
figures; the agreement is satisfactory. At small values of β the longitudinal velocity
fluctuations increase strongly with β. Upon comparing figures 10(a) and 11(a)
with figure 3(a,b) it is seen that the relative magnitude of the increase in the velocity
fluctuations between the different spectra is the same as that of the relative magnitude
of the decrease in the mean rise velocities. In a way vx2 is a measure of the range of
values that the vertical velocities of the bubbles will have as they rise. The probability
distribution of the vertical bubble velocity Vx is shown in figure 14 for two values of β,
in both cases for a Kraichan spectrum with λ∗ = 1. For comparison, the dashed lines
show Gaussian distributions with corresponding mean and variance. The probability
distribution function of Vx is close to Gaussian for β = 0.53, but for β = 0.18 we find
an asymmetrical distribution with an enhanced preference for low values and values
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Figure 12. (a) Longitudinal and (b) lateral integral time scales of the bubble motion as a function
of β. The data are presented as in figure 8 (λ∗ = 1, µ∗ = (π/2)1/2); filled symbols show to the
analytical result for small β.
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Figure 13. As figure 12 but for λ∗ = 4, µ∗ = 2(2π)1/2.

close to VT . Thus the likely explanation of the increase of the longitudinal velocity
fluctuations is that it is related to a slowing down of the bubbles in shear zones (by
the mechanism explained in the previous section), and an accelerating back to a value
close to VT when the bubbles are outside these zones; these processes occur more
often as the turbulence intensity increases.

The somewhat surprising fact that for small values of β the longitudinal integral
time scales of the bubble motion first become larger as β increases, whereas those of
the fluid become smaller, i.e. for the spectra with fixed longitudinal integral scale (see
figures 12a and 13a), is probably associated with the reduction in the mean velocity
of the bubbles. The lateral lift forces cause a bias in the velocity fluctuations sampled
by the bubbles, which are therefore better correlated, and of course as the mean
bubble velocity decreases the correlation of the fluid velocity along their trajectories
improves.

For values of β > 0.2 the integral time scales for the bubble motion steadily
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Figure 14. Probability distribution of the vertical bubble velocity Vx in simulations using the
Kraichnan spectrum with λ∗ = 1 and (a) β = 0.18 and (b) β = 0.53. Dashed lines are Gaussian
probability distribution functions with corresponding mean and variance. Vertical lines indicate
Vx = 0 and Vx = VT , the velocity of rise in still fluid.
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Figure 15. (a) Longitudinal and (b) lateral bubble velocity correlations when using the Kraichnan
spectrum (with λ∗ = 1). Numbers refer to values of β.

decrease, and they do this faster than the integral time scales for the motion of fluid
particles. Figure 15, the longitudinal and lateral bubble velocity correlations, shows
that this rapid decrease is caused by a reduction of the correlation of the bubble
velocity over large times; the fluid velocity fluctuations along the bubble trajectories
appear to remain well correlated over these larger times as can be seen in figure 16.
This is another indication of the significant role of the acceleration reaction forces
for larger values of β, which prevent the bubbles adapting their velocity to that of
the surrounding fluid. The reduction of the bubble diffusivities for values of β in
the range 0.2–0.4 is presumably related to the observed decrease in the Lagrangian
integral time scales.
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Figure 16. (a) Longitudinal and (b) lateral fluid velocity correlations along the bubble path when
using the Kraichnan spectrum (λ∗ = 1). Numbers refer to values of β.

The most remarkable feature of the results for β > 0.4 is a ‘blow-up’ of the bubble
velocity fluctuations as β increases, and as a result of this the bubble diffusivities
are again strongly raised. The effect can be seen most clearly in the simulations
with the von Kármán–Pao spectrum function with fixed longitudinal integral scale:
v2 increases even with respect to u2

0. This interesting behaviour is further addressed
below.

5.3. Blow-up of the velocity fluctuations

We seek to explain why for sufficiently large values of β the velocity fluctuations
of the bubble become isotropic, and increase enormously in magnitude, by using a
simple model equation:

dvi
dt

= − 1

τb
(vi − ui) + Li(t), (5.7)

in which the random force Li(t) does not explicitly depend on τb, and decorrelates
in a time that is much smaller than τb. This because as β increases the relaxation
time of the bubbles becomes large compared with the characteristic time scales of the
turbulence. The main simplification is that Li(t) does not depend on vi(t), for instance
as it appears in the expression for the lift force; we believe that that contribution plays
no role in the blow-up of the bubble velocity fluctuations. Another simplification
is that the model equation is one-dimensional, a choice motivated by the observed
isotropy of the fluctuations.

Dropping the indices, we have

v2(t) ≈ 1

τ2
b

∫ t

0

∫ t

0

e−|t−t
′ |/τb−|t−t′′ |/τbu(0)u(t′′ − t′)dt′dt′′

+
1

τb

∫ t

0

∫ t

0

e−|t−t
′ |/τb−|t−t′′ |/τb

(
u(0)L(t′′ − t′) + L(0)u(t′′ − t′)

)
dt′dt′′

+

∫ t

0

∫ t

0

e−|t−t
′ |/τb−|t−t′′ |/τbL(0)L(t′′ − t′)dt′dt′′.

Changing the order of integration, and then using that τb is much larger than a
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typical time over which the integrand is correlated, which implies that e−|t
′′−t′ |/τb can

be replaced by 1 and the limit t→∞ can be taken, yields

v2 ≈
∫ ∞

0

(
1

τb
u(0)u(s) + u(0)L(s) + L(0)u(s) + τbL(0)L(s)

)
ds.

Clearly, the last term is dominant and leads to a blow-up of v2. A comparison of the
model equation (5.7) with the equation of motion of a bubble (3.1) shows that L(t)
is of order u2

0/L, with L some characteristic length scale of the turbulence, and that
the integral time scale of L(t) is of order L/u0, so that

v2 ≈ τb
∫ ∞

0

L(0)L(s) ds = O

(
τbu

3
0

L

)
= O

(
βu2

0

τbVT

L

)
.

Since in the simulations either λ∗ or µ∗ (or both) are kept constant, τbVT/L is
approximately constant and the result agrees well with the linear dependence on β of
the dimensionless velocity fluctuations found for sufficiently large β.

The physical explanation of the observed behaviour is that very rapidly changing
(inertial) driving forces tend to ‘spread out’ the velocities of the bubbles, an effect
which is resisted by the viscous drag forces. But as the relative magnitude of the
relaxation time of the bubbles becomes larger the first effect will become dominant,
and the bubble velocity fluctuations will grow. The phenomenon also occurs when a
heavy molecule is immersed in a fluid of light molecules (see van Kampen 1992, pp.
219–221).

By a similar analysis it is also possible to calculate the velocity correlation for the
model system. The result is

lim
t→∞

v(t)v(t+ τ) ≈ v2e−τ/τb ,

for time separations τ much larger than the integral time scale of L(t). If it is assumed
that this provides a reasonable estimate for all values of τ, the bubble diffusivities
and integral time scales are found to be

D = O
(
u0Lβ2 (τbVT/L)2

)
, T = O(τb),

which is indeed observed in the simulations when the characteristic length scales of
the turbulence are small.

Whether the predicted blow-up can be observed in experiments is doubtful; the
applicability of the equation of motion of the bubbles is of course questionable for
turbulence of high intensity at small length scales.
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